MTR-10-10E MicroMini[™] Motor (10 mm diameter, 6 Vdc, 10 position encoder)

Linear 80 TPI/Rotary 80:1 Connection Specifications

National Aperture, Inc. - 5 Northwestern Dr. - Salem, N.H. 03079 - Tel. (800) 360-4598 - (603) 893-7393 - FAX (603) 893-7857 - www.nationalaperture.com/www.nationalapertur

10 Position Encoder Resolution Data Sheet

	MM-3M-ST, -F, -FOS, -EX, MM-4M-F
80 TPI Lead	Screw (0.3175 mm/turn)
GH ² Ratio	Max Travel Rate ³ (mm/sec)
16:1	6.614
64:1	1.653
256:1	0.413
1024:1	0.103

40 TPI Lead Scree	10 position encoder ¹	
GH ² Ratio	Max Travel Rate ³ (mm/sec)	Resolution (µm/count)
16:1	13.229	0.9922
64:1	3.307	0.2481
256:1	0.827	0.0620
1024:1	0.207	0.0155

10 position encoder¹ Resolution (µm/count) 0.4961 0.1240 0.0310 0.0078

Notes:

1. The 10mm motors used with both linear and rotary stages incorporate dual channel, 10 position, magnetic encoders. The quadrature output is equivalent to 40 encoder counts per motor armature revolution.

2. Gearhead ratio is denoted by GH.

3. Maximum travel rate is calculated with the motor armature turning at a maximum rate of 20,000 RPM.

Linear	Trav	<u>/el</u>		
Travol	rato	<u></u>	lou	latic

Travel rate calculations

Lead screw RPM	= motor RPM)/(gearhead ratio)
Distance per minute	= (lead screw RPM) x lead; (lead = 0.3175 mm for 80 TPI screw and 0.635 mm for 40 TPI
	screw)
Distance per second	= (distance per minute)/60
Distance in inches	= (distance (mm))/(25.4)
Example calculation: with motor RPM	= 20,000; GH ratio = 16:1; lead = 0.3175 mm
Distance per second	= [(20000 RPM)/(16)] x (0.3175 mm) x (min/60 sec)] = 6.6145 mm/sec

Encoder resolution calculations

Encoder counts per lead screw revolution	= (encoder counts per motor revolution) x (gearhead ratio)
Distance per encoder count	= lead/(encoder counts per lead screw revolution)
Example calculation: with motor GH ra	tio = 16:1; lead = 0.3175 mm; 40 encoder counts per motor revolution
Distance per encoder count	= (0.3175 mm)/(40 x 16) = 0.4961 µm/count

The information contained in this data sheet is subject to change without notice. Critical dimensions or specifications should be verified with our technical support staff.

National Aperture, Inc. - 5 Northwestern Dr. - Salem, N.H. 03079 - Tel. (800) 360-4598 - (603) 893-7393 - FAX (603) 893-7857 - www.nationalaperture.com/www.nationalapertur

г

111X-10-10E			
	М	M-3M-R	
	80:1 Worm Drive Ratio		10 position encoder ¹
GH ² Ratio	Final Output	Max Travel Rate ³ (rad/sec)	Resolution (µrad/count)
16:1	1,280:1	1.636	122.7185
64:1	5,120:1	0.409	30.6796
256:1	20,480:1	0.102	7.6699
1024:1	81,920:1	0.025	1.9175
 The 10mm motors used with equivalent to 40 encoder cou Gearhead ratio is denoted by Maximum travel rate is calcu 	both linear and rotary stages incorport unts per motor armature revolution. y GH. lated with the motor armature turning	orate dual channel, 10 position, magnetic e	ncoders. The quadrature output
Rotary Travel Fravel rate calculations Rotor travel rate (RPM) Rotor travel rate (rad/sec) Example calculation: with m Rotor travel rate (rad/sec) Encoder resolution calcula Encoder counts per lead screw Angular resolution Example calculation: with m Angular resolution	= (motor RPM)/[gear = [rotor travel rate (R notor RPM = 20,000; GH ratio = 7 = (20000 RPM)/(16 > ations revolution = [(encoder counts p = (6.283185 rad/revo notor GH ratio = 16:1; lead = 0.31 = (6.283185 rad per revolutions per gea revolution)]	thead ratio) x (worm drive ratio)] (PM)] x (min/60 sec) x (6.283185 rad/ 16:1; lead = 0.3175 mm x 80) x (min/60 sec) x (6.283185 rad/rational per motor revolution)] x (gearhead rational plution)/ (encoder counts per lead screent 175 mm; 40 encoder counts per motor lead screw revolution)/[(40 counts per arhead revolution) x (80 gearhead	/revolution) evolution) = 1.63624 rad/sec b) x (worm drive ratio) w revolution) revolution motor revolution) x (16 moto volutions per lead screw
Conversion: inch (in) = 25.4 m inch = 25,400 millimeter (mm) = 39.37E micron (μm) = 39.37E deg = 0.0174	m μm -3 inch -6 inch 5329252 rad		

The information contained in this data sheet is subject to change without notice. Critical dimensions or specifications should be verified with our technical support staff. National Aperture, Inc. = 5 Northwestern Dr. = Salem, N.H. 03079 = Tel. (800) 360-4598 = (603) 893-7393 = FAX (603) 893-7857 = www.nationalaperture.com/wwww.nationalaperture.com/wwwww.com/www.com/